Synthesis and X-Ray Crystal Structure of Chloro[2(1H)-pyridinethione-S]bis(triphenylphosphine)copper(I)[†]

Tarlok S. Lobana * and Paramjit K. Bhatia

Department of Chemistry, Guru Nanak Dev University, Amritsar–143005, India Edward R. T. Tiekink * Jordan Laboratories, Department of Physical and Inorganic Chemistry, University of Adelaide, Adelaide, South Australia 5001, Australia

The preparation and single-crystal structure analysis of $[CuCl(C_5H_5NS)(PPh_3)_2]$ is reported. The geometry about the copper atom is distorted tetrahedral with one co-ordination site being occupied by the thione S atom of the neutral C_5H_5NS ligand; Cu-S 2.374(2) Å. The complex features a strong intramolecular hydrogen-bonding interaction between the nitrogen-bound hydrogen atom and the Cl atom; N-H ••• Cl of 2.219(8) Å. Crystals are monoclinic, space group $P2_1/c$ with unit-cell dimensions a = 14.456(4), b = 10.152(3), c = 24.517(5) Å, $\beta = 93.40(2)^\circ$, and Z = 4. The structure was refined by a full-matrix least-squares procedure to R = 0.067 for 3 413 reflections for which $l \ge 2.5\sigma(l)$.

The ligand 2-mercaptopyridine (hereafter C_5H_5NS), which contains the -N(H)-C(=S)- chromophore, is a useful model compound for sulphur-containing analogues of purine and pyrimidine bases. Consequently, there has been considerable interest in the co-ordination properties of both the neutral thione, (1), and of the deprotonated thiolate, (2), ligands.^{1,2} Crystallographic investigations have shown that the thione co-ordinates exclusively *via* the S atom.^{3–8} In contrast, the thiolate, (2). can adopt a variety of co-ordination modes, namely: (*i*) S unidentate;² (*ii*) S, N chelating;^{2.6.9–12} (*iii*) S, N, bridging;^{6.1.3} and (*iv*) S unidentate (with a weak M···N interaction).^{14.15}

Studies of the co-ordination of Cu¹ by (1) or (2) have focused on the preparation and spectroscopic characterization of (*a*) insoluble species of general formula $[CuX(C_5H_5NS)_n]$ (X = Cl, Br, or I; n = 2 or 3),¹⁶ and (*b*) $[Cu(C_5H_4NS)]$ and $[Cu(C_5H_4NS)(PPh_3)]$.¹⁷ Crystallographic studies are available for $[Cu(C_5H_5NS)_3]^+$, which shows a distorted trigonal configuration about the copper centre defined by three S donor atoms,³ $[Cu(C_5H_5NS)_4]^+$ in which the copper atom is tetrahedrally co-ordinated by four S donor atoms,⁷ and $[Cu_2(C_5H_5NS)_6]Cl_2$ which exists as a dimer as a result of two bridging C₅H₅NS ligands (*via* the thione S atoms). The tetrahedral geometry about each copper atom is completed by two terminal C₅H₅NS ligands.⁸ The preparation of the mixedligand complex $[CuCl(C_5H_5NS)(PPh_3)_2]$ and its crystal structure is reported herein.

Experimental

Preparation of $[CuCl(C_5H_5NS)(PPh_3)_2]$.—The starting material, $[CuCl(C_5H_5NS)]$, was prepared in the following manner: a solution of C_5H_5NS (Sigma) (4.5 mmol) in ethanol (15 cm³) was added to a solution of $CuCl_2 \cdot 2H_2O$ (2.25 mmol) in ethanol (15 cm³) which resulted in the formation of a yellow insoluble complex, formulated as $[CuCl(C_5H_5NS)]$.¹⁶ The latter (0.95 mmol) was refluxed with PPh₃ (1.9 mmol) in chloroform (30 cm³) for 2 h. The solvent was reduced to 1/3 of its original volume and the complex was precipitated by the addition of light petroleum (b.p. 60—80 °C) (2—3 cm³). The yellow product was filtered off and dried *in vacuo* (Found: C,

67.1; H, 4.1; Cu, 8.4. Calc. for $C_{41}H_{35}ClCuNP_2S$: C, 67.0; H, 4.7; Cu 8.6%), m.p. 145—150 °C. Crystals suitable for X-ray studies were obtained from the slow evaporation of an EtOH–CH₂Cl₂ solution of the compound.

Crystallography.—Crystal data. $C_{41}H_{35}ClCuNP_2S$, M = 734.7, monoclinic, space group $P2_1/c$, a = 14.456(4), b = 10.152(3), c = 24.517(5) Å, $\beta = 93.40(2)^\circ$, U = 3591.7 Å³, Z = 4, $D_c = 1.359$ g cm⁻³, F(000) = 1520, Mo- K_a radiation, $\lambda = 0.710$ 73 Å, $\mu = 8.18$ cm⁻¹.

Intensity data for a crystal, $0.08 \times 0.16 \times 0.35$ mm, were measured at room temperature on an Enraf-Nonius CAD4 diffractometer with graphite-monochromatized Mo- K_x radiation. The ω —2 θ scan technique was employed to measure the intensities of 7 144 reflections (θ_{max} . 22.5°) which were corrected for Lorentz and polarization effects and absorption effects (maximum and minimum transmission factors 0.940 and 0.866).¹⁸ A total of 6 317 reflections were unique (R_{merge} 0.039) and of these 3 413 satisfied $I \ge 2.5\sigma(I)$.

Solution and refinement of the structure. The structure was solved by the Patterson method and refined by a full-matrix leastsquares procedure in which the function $\Sigma w \Delta^2$ was minimized where $\Delta = ||F_o| - |F_c||$ and w was the weight applied to each reflection.¹⁸ Non-phenyl, non-hydrogen atoms were refined anisotropically, phenyl rings were refined as hexagonal rigid groups, and hydrogen atoms (except for NH which was located from a difference map but not refined) were included in the model at their calculated positions. The refinement converged to R = 0.067, R' = 0.069 for $w = 1.58/[\sigma^2(F) + 0.002F^2]$. Fractional atomic co-ordinates and selected bond distances and angles are given Tables 1 and 2 respectively. The scattering factors for neutral Cu (corrected for anomalous dispersion) were from ref. 19 and those for the remaining atoms were incorporated in SHELX 76.¹⁸

Additional material available from the Cambridge Crystallographic Data Centre comprises H-atom co-ordinates, thermal parameters, and remaining bond lengths and angles.

⁺ Supplementary data available: see Instructions for Authors, J. Chem. Soc., Dalton Trans., 1989, Issue 1, pp. xvii—xx.

Atom	x	у	Z
Cu	0.239 02(9)	-0.19292(9)	0.143 23(4)
Cl	0.267 2(1)	0.034 2(2)	0.156 6(1)
S	0.089 6(2)	-0.2221(2)	0.0993(1)
P(1)	0.2424(1)	-0.2607(2)	0.2329(1)
P(2)	0.3342(1)	-0.2809(2)	0.0815(1)
N(1)	0.066 0(5)	0.036 4(8)	0.1077(3)
C(1)	0.032 0(6)	-0.0784(9)	0.089 0(3)
C(2)	-0.0554(7)	-0.0700(12)	0.060 5(4)
C(3)	-0.0998(8)	0.046 0(14)	0.053 0(5)
C(4)	-0.0611(8)	0.162 2(13)	0.073 7(5)
C(5)	0.022 4(8)	0.154 9(11)	0.101 5(5)
C(6)	0.357 6(3)	-0.2533(4)	0.267 5(2)
C(7)	0.397 9(3)	-0.1300(4)	0.277 1(2)
C(8)	0.488 9(3)	-0.1209(4)	0.299 1(2)
C(9)	0.539 6(3)	-0.2350(4)	0.311 5(2)
C(10)	0.499 3(3)	-0.3583(4)	0.301 9(2)
C(11)	0.408 3(3)	-0.367 5(4)	0.279 9(2)
C(12)	0.208 6(4)	-0.4304(5)	0.245 3(2)
C(13)	0.217 5(4)	-0.5190(5)	0.202 4(2)
C(14)	0.201 1(4)	-0.6529(5)	0.210 3(2)
C(15)	0.175 7(4)	-0.6981(5)	0.261 0(2)
C(16)	0.166 8(4)	-0.6095(5)	0.303 9(2)
C(17)	0.183 2(4)	-0.475 6(5)	0.296 0(2)
C(18)	0.173 0(4)	-0.160 1(6)	0.277 2(2)

Table 1. Fractional atomic co-ordinates for [CuCl(C₅H₅NS)(PPh₃)₂]

Table 2. Selected interatomic bond distances (Å) and angles (°) for $[CuCl(C_5H_5NS)(PPh_3)_2]$

Cu-Cl	2.361(2)	Cu–S	2.374(2)
Cu-P(1)	2.301(2)	Cu-P(2)	2.286(2)
S-C(1)	1.692(9)	N(1)-C(1)	1.34(1)
N(1)-C(5)	1.36(1)	C(1)-C(2)	1.41(1)
C(2)-C(3)	1.35(2)	C(3) - C(4)	1.39(2)
C(4)–C(5)	1.35(1)		
Cl–Cu–S	109.2(1)	Cl-Cu-P(1)	99.6(1)
Cl-Cu-P(2)	111.6(1)	S-Cu-P(1)	111.3(1)
S-Cu-P(2)	102.6(1)	P(1)-Cu-P(2)	122.4(1)
Cu-S-C(1)	112.8(3)	S-C(1)-N(1)	122.2(6)
S-C(1)-C(2)	123.0(8)	N(1)-C(1)-C(2)	114.8(9)
C(1)-N(1)-C(5)	125.0(8)		

Results and Discussion

The crystals structure analysis, Figure, confirms the stoicheiometry of the compound as $[CuCl(C_5H_5NS)(PPh_3)_2]$. The Cu¹ exists in a distorted tetrahedral environment with the largest deviation from the ideal geometry arising, in part, from the presence of the two PPh₃ ligands; P-Cu-P 122.4(1)°. The coordination about the Cu¹ is unremarkable with similar geometries being found previously in $[CuCl(PPh_3)_2L]$ where L = 2-thiopyrrole-1,2-dicarboximide²⁰ or dithio-oxamide²¹ (both ligands co-ordinating through a thione group). Of interest, however, is the mode of co-ordination of the C₅H₅NS ligand.

The C₅H₅NS ligand is co-ordinated through the S atom at a Cu–S distance of 2.374(2) Å. This distance is longer, as expected, than those of 2.213(5), 2.225(5), and 2.228(5) Å found³ in the related compound [Cu(C₅H₅NS)₃]⁺ in which the copper atom is in a distorted trigonal geometry, but lies in the range 2.273(3)–2.498(3) Å found for the tetrahedral copper atoms in [Cu(C₅H₅NS)₄]^{+ 7} and [Cu₂(C₅H₅NS)₆]^{2+.8} It is noteworthy that the Cu–Cl, –P, and –S bond distances in [CuCl-(C₅H₅NS)(PPh₃)₂] are comparable to the equivalent distances found in the [CuCl(PPh₃)₂L] complexes cited above.^{20.21} The

Atom	x	У	Ζ
C(19)	0.089 4(4)	0.110 6(6)	0.254 4(2
C(20)	0.035 2(4)	-0.0285(6)	0.285 2(2
C(21)	0.064 7(4)	0.004 1(6)	0.338 7(2
C(22)	0.148 3(4)	-0.0454(6)	0.361 4(2
C(23)	0.202 5(4)	-0.127 5(6)	0.330 7(2
C(24)	0.295 8(3)	-0.4457(5)	0.058 8(2
C(25)	0.344 5(3)	-0.558 4(5)	0.075 9(2
C(26)	0.307 6(3)	-0.6828(5)	0.064 1(2
C(27)	0.221 9(3)	-0.694 5(5)	0.035 2(2
C(28)	0.173 2(3)	-0.581 8(5)	0.018 1(2
C(29)	0.210 2(3)	-0.457 4(5)	0.029 9(2
C(30)	0.457 8(3)	-0.302 7(6)	0.100 1(2
C(31)	0.518 0(3)	-0.359 6(6)	0.064 5(2
C(32)	0.612 1(3)	-0.371 2(6)	0.079 9(2
C(33)	0.646 0(3)	-0.325 8(6)	0.131 0(2
C(34)	0.585 8(3)	-0.268 8(6)	0.166 6(2
C(35)	0.491 7(3)	-0.257 2(6)	0.151 2(2
C(36)	0.341 9(4)	-0.189 2(4)	0.017 8(2
C(37)	0.352 1(4)	-0.248 6(4)	-0.0328(2
C(38)	0.370 0(4)	-0.171 7(4)	-0.0781(2)
C(39)	0.377 7(4)	-0.035 2(4)	-0.072 8(2
C(40)	0.367 5(4)	0.024 3(4)	-0.0223(2)
C(41)	0.349 6(4)	-0.052 7(4)	0.023 1(2

Figure. Crystallographic numbering scheme for $[CuCl(C_5H_5NS)-(PPh_3)_2]$ drawn with ORTEP at 15° probability ellipsoids. All hydrogen atoms except for NH have been omitted for clarity

 C_5H_5NS ligand is essentially planar [maximum deviation: 0.01(1) Å for C(5)] and the S atom lies 0.014(3) Å above this plane. The S–C(1) distance of 1.692(9) Å is equal to that found in the free ligand²² [1.692(2) Å] and comparable to the C–S distances of 1.68(2)—1.70(2) Å found in [Cu(C₅H₅NS)₃]^{+ 3} and 1.70(1)—1.71(1) Å in [Cu(C₅H₅NS)₄]^{+ 7} However, in the other four structurally characterized complexes with the thione ligand, (1), the C–S bond is significantly lengthened: 1.730(9) Å in [Sn(CH₃)₂Cl₂(C₅H₅NS)₂] (molecule has Ī symmetry);⁴ 1.720(3) and 1.721(3) Å in [CoCl₂(C₅H₅NS)₂];⁵ 1.719(6) Å in [Rh₂Cl₂(µ-C₅H₄NS)₂(C₅H₅NS)₂(CO)₂] (molecule has two-fold symmetry);⁶ and 1.719(8) and 1.725(9) Å for the terminal

 C_5H_5NS ligands in the $[Cu_2(C_5H_5NS)_6]^{2+}$ dimer.⁸ The last four complexes appear to be examples where (1) co-ordinates more in the zwitterionic form, (3), than in the above copper examples where the thione form predominates. Interatomic parameters (Table 2) describing the C_5H_5NS ligand also suggest that this ligand functions as a thione in $[CuCl(C_5H_5NS)-(PPh_3)_2]$.

As has been found previously in both the tin⁴ and rhodium⁶ complexes above, the nitrogen-bound hydrogen atom in $[CuCl(C_5H_5NS)(PPh_3)_2]$ participates in an intramolecular hydrogen-bonding contact with a metal-bound chloride atom; as illustrated for $[CuCl(C_5H_5NS)(PPh_3)_2]$ in the Figure, this results in the formation of a Cu-Cl-H-N-C-S six-membered ring. The hydrogen atom was located from the difference map and found to be 1.01 and 2.22 Å from the N and Cl atoms respectively $[N \cdots Cl 3.079(7) Å]$ and the N-H-Cl angle is 142°.

Acknowledgements

The Australian Research Grants Scheme is thanked for support. We are grateful to the UGC (Delhi) for financial support and to Guru Nanak Dev University for research facilities (P.K.B.).

References

- 1 E. S. Raper, Coord. Chem. Rev., 1985, 61, 115.
- 2 P. Mura, B. G. Olby, and S. D. Robinson, J. Chem. Soc., Dalton Trans., 1985, 2101.

- 3 S. C. Kokkou, S. Fortier, P. J. Rentzeperis, and P. Karagiannidis, Acta Crystallogr., Sect. C, 1983, 39, 178.
- 4 G. Valle, R. Ettorre, U. Vettori, V. Peruzzo, and G. Plazzogna, J. Chem. Soc., Dalton Trans., 1987, 815.
- 5 E. Binamira-Soriaga, M. Lundeen, and K. Seff, Acta Crystallogr., Sect. B, 1979, 35, 2875.
- 6 A. J. Deeming, M. N. Nafees Meah, H. M. Dawes, and M. B. Hursthouse, J. Organomet. Chem., 1986, 299, C25.
- 7 S. C. Kokkou, V. Schramm, and P. Karagiannidis, *Acta Crystallogr., Sect. C*, 1985, **41**, 1040.
- 8 E. C. Constable and P. R. Raithby, J. Chem. Soc., Dalton Trans., 1987, 2281.
- 9 P. Mura and S. D. Robinson, Acta Crystallogr., Sect. C, 1984, 40, 1798.
- 10 S. G. Rosenfield, S. A. Swedburg, S. K. Arora, and P. K. Mascharak, *Inorg. Chem.*, 1986, **25**, 2109.
- 11 M. Masaki, S. Matsunami, and H. Ueda, *Bull. Chem. Soc. Jpn.*, 1978, **51**, 3298.
- 12 S. R. Fletcher and A. C. Skapski, J. Chem. Soc., Dalton Trans., 1972, 635.
- 13 I. Kinoshita, Y. Yasuba, K. Matsumoto, and S. Ooi, *Inorg. Chim. Acta*, 1983, 80, L13.
- 14 A. P. Bozopoulos, S. C. Kokkou, P. J. Rentzeperis, and P. Karagiannidis, *Acta Crystallogr., Sect. C*, 1984, **40**, 944.
- 15 A. Castiñeiras, W. Hiller, J. Strähle, J. Bravo, J. S. Casas, M. Gayoso, and J. Sordo, J. Chem. Soc., Dalton Trans., 1986, 1945.
- 16 I. P. Evans and G. Wilkinson, J. Chem. Soc., Dalton Trans., 1974, 946.
- 17 N. Lenhart and H. Singer, Z. Naturforsch., Teil B, 1975, 30, 284.
- 18 G. M. Sheldrick, SHELX 76, Program for Crystal Structure Determination, University of Cambridge, 1976.
- 19 W. C. Hamilton and J. A. Ibers, 'International Tables for X-Ray Crystallography,' Kynoch Press, Birmingham, 1974, vol. 4, pp. 99, 149.
- 20 K. K. Pandey, M. Noltemeyer, G. M. Sheldrick, and R. Saheb, Z. Naturforsch., Teil B, 1984, 39, 586.
- 21 M. Belicchi Ferrari, G. Gasparri Fava, C. Pelizzi, P. Tarasconi, Inorg. Chim. Acta, 1985, 98, L49.
- 22 U. Ohms, H. Guth, A. Kutoglu, and C. Scheringer, Acta Crystallogr., Sect. B, 1982, 38, 831.

Received 11th July 1988; Paper 8/02784F